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What Does the Hückel MO Method Calculate? 

The Hückel molecular orbital (HMO) method has played the unfathomable role in organic 

chemistry since it was adapted in the problems of chemistry about 50 years ago. Recent days, the 

HMO method has played the main role of the Woodward-Hoffmann rule. In spite of such an 

important method, the very few organic chemists seem to understand the answer to "what does the 

Hückel MO method calculate?"  

The HMO method was introduced by E. Hückel (1896-1980, Germany) in order to explain the 

special stability of benzene (Fig. 1). It was the 1930s. Since no computers were available, bold 

approximations and abbreviations were taken in and the method was made such a simple one that 

hand calculation can be carried out if it is a small system. Since it was so much simplified, the 

energy obtained by the HMO method is not clear in what is expressed.  

The meaning of the HMO method has been studied. 1, 2) I will explain it based on the literature 2. 

Since the HMO method is a simplification of a Schrödinger equation, one may grasp the physical 

meaning of simplification and the results of calculation by knowing the ways of simplification. 

Therefore, I will start explaining from the theory of the molecular orbital method.  

        

a b c

d  

          Fig. 1. Structure of benzene. 

 

A Brief Theory of the Molecular Orbital Method 

General Theory 

 First, let me explain the general method of how to form a Schrödinger equation. (Those who feel 

unnecessary may skip this section.) 

 Let me go ahead with the story imagining a hydrogen atom as a model (Fig. 2). In quantum 

mechanics, momentum (p) is a more fundamental quantity than velocity (v). Here, p= mv (m is mass). 

The energy (E) of a system consists of the sum of kinetic energy (T) and potential energy (V). That is, 

E = T+V. For example, a hydrogen atom has an electron in the surroundings of a nucleus (proton). 

Since the Born-Oppenheimer (BO) approximation3) (any nucleus does not move) is used, the kinetic 

energy of the nucleus is 0. This is omitted from the start. If the nucleus is put on the origin, using the 

distance of the electron from the origin (r= √𝑥2 + 𝑦2 + 𝑧2) and electron’s velocity (v), E is 

expressed as the center formula in Eq. 1. E is also expressed, using momentum (p), as the bracketed 
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formula.   

   𝐸 = 𝑇 + 𝑉 =
1

2
𝑚𝑣2 −

𝑒2

4𝜋𝜀0𝑟
(≡ 𝐇 =

1

2𝑚
𝑝2 −

𝑒2

4𝜋𝜀0𝑟
)     1 

Here, m and 0 are mass of electron and the vacuous dielectric constant. Especially the bracketed 

formula that expresses E with coordinates (generally expressed as q) and the momentum p is called 

the Hamilton function. This function is show as H (q, p) (the variables q and p are not shown in 

many cases.).  

The procedure of formulating the Schrödinger equation of an arbitrary system is simply packed as, 

Procedure 1: Express the energy of a system on the classical mechanics (Newtonian mechanics) and 

denote the energy of the electron by momenta (for example, px, py, pz) and coordinates (x, y, z) 

(formulation of the Hamilton function). 

     𝐸 ≡ 𝐇 = 𝑇(𝑝𝑥, 𝑝𝑦, 𝑝𝑧) + 𝑉(𝑥, 𝑦, 𝑧)      2 

Procedure 2: Concerning every momentum, next transformation is carried out, 

     𝑝𝑥 → −𝑖ℏ
𝜕

𝜕𝑥
 

     𝑝𝑦 → −𝑖ℏ
𝜕

𝜕𝑦
      3 

     𝑝𝑧 → −𝑖ℏ
𝜕

𝜕𝑧
 

   As for coordinates, 

      𝑥 → 𝑥 

𝑦 → 𝑦 4 

𝑧 → 𝑧 

In the above transformations, i is the imaginary unit and ħ is the constant of Planck’s constant 

divided by 2. The operator H formed as above procedures is called a Hamiltonian. Here, 

𝜕

𝜕𝑥
expresses partial differentiation. That is, for example, if the function f(x,y)=x2+3xy+y3is 

partial-differentiated with respect to x, 

    
∂

∂𝑥
(𝑥2 + 3𝑥𝑦 + 𝑦3) = 2𝑥 + 3𝑦 

is given. And the quantum mechanical operator for px
2 is, 

   𝑝𝑥
2 = 𝑝𝑥𝑝𝑥 → −𝑖ℏ𝑝𝑥

𝜕

𝜕𝑥
→ −ℏ

2 𝜕

𝜕𝑥

𝜕

𝜕𝑥
≡ −ℏ

2 𝜕2

𝜕𝑥2
 

Here, 
𝜕2

𝜕𝑥2
is second partial-derivative as you know. 

 Using this method, let us obtain the Schrödinger equation of hydrogen. As the classical model, 
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              Fig.2. Classical model of a hydrogen atom 

an electron assumed to run in a circle around the non-moving proton. The classical expression of E is, 

putting the proton on the origin and using mass m and velocity u, shown as, 

  𝐸 =
𝑚

2
(𝑢𝑥

2 + 𝑢𝑦
2 + 𝑢𝑧

2) −
𝑒2

4𝜋𝜀0𝑟
𝑟 = √𝑥2 + 𝑦2 + 𝑧2     5 

If momentum, p=mu, is used, the Hamilton function is obtained as,  

      𝐇 =
1

2𝑚
(𝑝𝑥

2 + 𝑝𝑦
2 + 𝑝𝑧

2) −
𝑒2

4𝜋𝜀0𝑟
       6 

Transformations due to Eqs. 3 and 4 on Eq. 6 give the Hamiltonian (H) as, 

  𝐻 ≡
−ℏ

2

2𝑚
∇2 −

𝑒2

4𝜋𝜀0𝑟
(≡

−ℎ
2

8𝜋2𝑚
(
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
) −

𝑒2

4𝜋𝜀0𝑟
)     7 

Thus, the Schrödinger equation of hydrogen atom is, 

             𝐸𝜓 = 𝐻𝜓        8 

Here, the contents of H are as shown in Eq. 7. Next, let us apply this method to molecules. 

 Consider a molecule that consists of N number of nuclei and n number of electrons. The classical 

total energy (E) is expressed as, 

    𝐸 =
1

2
∑ 𝑀𝐴
𝑁
𝐴=1 𝑈𝐴

2 +
𝑚

2
∑ 𝑢𝑖

2𝑛
𝑖=1 − ∑ ∑ 𝑘

𝑍𝐴𝑒
2

𝑟𝑖𝐴

𝑛
𝑖=1

𝑁
𝐴=1 + ∑ 𝑘

𝑒2

𝑟𝑖𝑗

𝑛
𝑖>𝑗 + ∑ 𝑘

𝑍𝐴𝑍𝐵

𝑅𝐴𝐵

𝑁
𝐴>𝐵      8 

If the BO approximation is introduced in Eq. 8, the kinetic energy of nuclei (the first term of 

right-hand side of the equation) is set to be 0. The nuclear repulsion energy is obtained classically as 

well leading the following formula. 

       𝐸 = 𝐸𝑒𝑙 +∑ 𝑘
𝑍𝐴𝑍𝐵

𝑅𝐴𝐵

𝑁
𝐴>𝐵  

𝐸𝑒𝑙 =
𝑚

2
∑ 𝑢𝑖

2𝑛
𝑖=1 −∑ ∑ 𝑘

𝑍𝐴𝑒
2

𝑟𝑖𝐴

𝑛
𝑖=1

𝑁
𝐴=1 + ∑ 𝑘

𝑒2

𝑟𝑖𝑗

𝑛
𝑖>𝑗          9 

Then, Eel is transformed into the classical Hamilton function (Hel) as, 

     𝐇𝑒𝑙 = −
1

2𝑚
∑ 𝑝𝑖

2𝑛
𝑖=1 − ∑ ∑ 𝑘

𝑍𝐴𝑒
2

𝑟𝑖𝐴

𝑛
𝑖=1

𝑁
𝐴=1 +∑ 𝑘

𝑒2

𝑟𝑖𝑗

𝑛
𝑖>𝑗        10 

According to transformation procedures (Eqs. 3and 4), one may obtain quantum mechanical 

Hamiltonian as,  

     𝐻𝑒𝑙 = −
ℏ
2

2𝑚
∑ ∇𝑖

2𝑛
𝑖=1 −∑ ∑ 𝑘

𝑍𝐴𝑒
2

𝑟𝑖𝐴

𝑛
𝑖=1

𝑁
𝐴=1 + ∑ 𝑘

𝑒2

𝑟𝑖𝑗

𝑛
𝑖>𝑗        11 

+

-

r
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And using this Hamiltonian, the Schrödinger equation is 𝐸𝑒𝑙Ψ𝑒𝑙 = 𝐻𝑒𝑙Ψ𝑒𝑙. Solving this equation to 

obtain Eel and adding nuclear repulsion energy, one may get the total energy of the considered 

system. 

Since the right-hand side of Eq. 11 consists of the sum of operators of the kinetic energy and 

Coulombic energy (potential energy), H is expressed as the sum of T and V as, 

   𝐻 = 𝑇 + 𝑉 12 

𝑇 = −
ℏ
2

2𝑚
∑∇𝑖

2

𝑛

𝑖=1

13 

𝑉 = −∑∑𝑘
𝑍𝐴𝑒

2

𝑟𝑖𝐴

𝑛

𝑖=1

𝑁

𝐴=1

+∑𝑘
𝑒2

𝑟𝑖𝑗

𝑛

𝑖>𝑗

14 

 Since the Hamiltonian for a general system (Eq.11) looks complicated, a special unit system called 

“atomic units” may be introduced. The length unit of atomic units is the distance of the maximum 

distribution of electron from the nucleus of hydrogen atom (a0) and is set to 1 (au). The mass of 

electron (m), elementary charge (i.e., the absolute charge quantity of an electron or a proton), and 

Planck’s constant (ħ) are all set to 1 (au). By doing so, ħ, e, and m in the Schrödinger equation 

disappear. 

Length 

    1𝑎𝑢 = 𝑎0 =
4𝜋𝜀0ℏ

2

𝑚𝑒𝑒
2 = 0.529167 × 10−10𝑚      15 

Charge 

    1𝑎𝑢 = 𝑒 = 1.60219 × 10-19𝐶       16 

Energy (this unit is called a Hartree also) 

    1𝑎𝑢 =
𝑒2

4𝜋𝜀0𝑎0
= 4.35942 × 10−18𝐽      17 

Using atomic units, Eq. 11 turns out to be a very simple form as, 

    𝐻𝑒𝑙 = −
1

2
∑ ∇𝑖

2𝑛
𝑖=1 − ∑ ∑

𝑍𝐴

𝑟𝑖𝐴

𝑛
𝑖=1

𝑁
𝐴=1 +∑

1

𝑟𝑖𝑗

𝑛
𝑖>𝑗          18 

 

Hückel Molecular Orbital Method 

A carbon-carbon bond is either -bond or -bond. -Bond is that with the axial symmetry, in which 

the character of the bond by rotation around the bond axis is not changed. All bonds that include s 

atomic orbital in organic compounds are usually  bonds. Hydrocarbons which consist only of  

bonds are called saturated hydrocarbons. They are chemically non-reactive and do not have special 

physiological activity, either. This is because the reactivity is in a low state as the energy of 

 electrons is low and stable if compared with  electrons.  
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 On the other hand, a  bond is that with plane-symmetric nature, and has a plane (symmetry plane) 

which divides two bonding atomic orbitals equally in accordance with a bond axis. In organic 

compounds, one double bond or triple bond consists of one  bond, and one or two  bonds, 

respectively. Hydrocarbons which include  bond(s) are called unsaturated hydrocarbons. It is 

known that a compound including an unsaturated bond is active in a chemical reaction and 

physiological activity is also strong. This is because  electrons (electrons in  bonds) are in an 

energetic high state. Although a  bond includes 2 s orbitals, a  bond consists only of 2p orbitals. 

Since a 2p orbital is in a higher level of energy than 2s, the energy of most  electrons becomes 

higher than that of  electron.  

The benzene (C6H6) has a circular configuration among double bonds and shows specific stability.  

Benzene has three double bonds with the structure of Fig. 1. Generally, an unsaturated bond 

(especially double bond) between carbons is rich in chemical reactivity. For example, when the 

solution of bromine (Br2) is added to a solution of an unsaturated hydrocarbon, it is well-known that 

bromine adds to a double bond and the color of bromine is decolorized immediately. However, such 

a reaction does not occur in benzene. Benzene rarely causes the addition reaction. Instead, a 

displacement reaction takes place: H is replaced by another substituent group. That is, benzene tends 

to maintain the structure of the double bonds conjugated. There is a series of unsaturated 

hydrocarbons with similar characters, and they have a circular configuration of double bonds and are 

called aromatic hydrocarbons (aromatic compounds). These chemical features originated in the 

conjugation of double bonds. The Hückel molecular orbital (HMO) method has played important 

roles in the characterization study of aromatic hydrocarbons. 

  

Approximations in the HMO Method 

Assumptions used for the HMO method are enumerated and the meaning is verified as follows. 

(1) The conjugated  electronic system is only considered. The system in which conjugation broke 

off as shown in Fig. 3 is considered as two  electronic systems. They are treated separately. 

          

System 1 System 2  

Fig. 3. The system in which conjugation is broken off. It is considered  

as two  electronic systems 

 

(2) Influence of  electrons and inner-shell electrons to the  system is taken in as an average 

potential. 
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The total electronic Hamiltonian (Hel) of the system that consists of N number of nuclei and n 

number of electrons is written as, 


= ==

+−−=
ji ij

N

A

n

i Ai

A
i

n

i

el

rr

Z
H

1

2

1

1 1

2

1

      18 

Here, ∇𝑖
2is the Laplacian with respect to electron i, 

AZ  is the nuclear charge of nucleus A, 𝑟𝐴𝑖 is 

the distance between nucleus A and electron i, and ∑
1

𝑟𝑖𝑗
𝑖<𝑗  means taking the sum of electron 

repulsion energy between electrons i and j without duplication. Eq.18 is partitioned into the  

electron and other electron ( electrons and inner-shell electrons) terms. If the number of  electrons 

is set p, Eq.18 is rewritten as, 

 







+−−++−−= 

−

=

−

=

−

== ==

pn

lk kl

N

A

pn

k Ak

A
k

pn

k

p

ji ij

N

A

p

i Ai

A
i

p

i

el

rr

Z

rr

Z
H

1

2

11

2

1

1 1

2

11 1

2

1

       19 

In Eq.19, subscripts i and j concern  electrons while k and l do other electrons. Terms in the bracket 

are concerning  electrons and inner-shell electrons. They are treated as constant potential and 

replace by constant K. 

(3) The electron repulsion between  electrons (∑
1

𝑟𝑖𝑗

𝑝
𝑖<𝑗 ) are averaged and included in K.  

              K
r

Z
H

N

A

p

i Ai

A
i

p

i

+−−= 
= == 1 1

2

1 2

1
      20 

This Hamiltonian is written as H. 

(4) The potentials of each nucleus (
= =

N

A

p

i Ai

A

r

Z

1 1

) are averaged and included in K. Consequently, H 

is, 

     𝐻𝜋 = ∑ −
1

2

𝑝
𝑖=1 ∇𝑖

2 +𝐾       21 

The Schrödinger equation of Hamiltonian 21 turns out as, 

 𝜀𝜓 = 𝐻𝜋𝜓 = (∑ −
1

2

𝑝
𝑖=1 ∇𝑖

2 + 𝐾)𝜓 = ∑ −
1

2

𝑝
𝑖=1 ∇𝑖

2𝜓 + 𝐾𝜓 

Here, 𝐾  is moved to the left-hand side giving, 

      (𝜀 − 𝐾)𝜓 = (∑ −
1

2

𝑝
𝑖=1 ∇𝑖

2)𝜓        22 

Again, the following rewriting is carried out. 

      (𝜀 − 𝐾) ⇒ 𝜀  

      ∑ −
1

2

𝑝
𝑖=1 ∇𝑖

2≡ 𝐻𝜋               23 

(5) The total wavefunction is expressed by the product of each molecular orbital in terms of Linear 

Combination of Atomic Orbitals (LCAO). 
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 The Hückel molecular orbital is obtained by solving Eq.22. We have two ways to solve Eq.22: 

The HMO method is to use the LCAO method and the other is to solve it analytically 

(mathematically). The meaning of a Hückel molecular orbital becomes clearer by comparing 

with the analytical results. For the time being, let us continue to explain the HMO method. 

 The total wavefunction is expressed by the product of each molecular orbital.4) 

   Ψ(1,2,⋯ , 𝑛) = 𝜓1(1)𝜓2(2)𝜓3(3)⋯𝜓𝑝(𝑝)      24 

The Schrödinger equation turns out, 

𝐸𝜓1(1)𝜓2(2)𝜓3(3)⋯𝜓(𝑝) = (∑ −
1

2

𝑝
𝑖=1 ∇𝑖

2)𝜓1(1)𝜓2(2)𝜓3(3)⋯𝜓𝑝(𝑝)      25 

On both sides, 𝜓(1)𝜓(2)𝜓(3)⋯𝜓(𝑝) is multiplied and integration is carried out concerning 

all electrons and all spaces to give, 

𝐸∫(𝜓1(1)𝜓2(2)𝜓3(3)⋯𝜓𝑝(𝑝))
2
𝑑𝜏1𝑑𝜏2𝑑𝜏3⋯𝑑𝜏𝑝 = 

∫𝜓1(1)𝜓2(2)𝜓3(3)⋯𝜓𝑝(𝑝)(∑−
1

2

𝑝

𝑖=1

∇𝑖
2)𝜓1(1)𝜓2(2)𝜓3(3)⋯𝜓𝑝(𝑝) 𝑑𝜏1𝑑𝜏2𝑑𝜏3⋯𝑑𝜏𝑝 

= ∫𝜓1(1) (−
1

2
∇1
2)𝜓1(1)𝑑𝜏1∫𝜓2(2)

2𝜓3(3)
2⋯𝜓𝑝(𝑝)

2 𝑑𝜏2𝑑𝜏3⋯𝑑𝜏𝑝

+∫𝜓2(2) (−
1

2
∇2
2)𝜓2(2)𝑑𝜏2∫𝜓1(1)

2𝜓3(3)
2⋯𝜓𝑝(𝑝)

2 𝑑𝜏1𝑑𝜏3⋯𝑑𝜏𝑝 

+∫𝜓3(3) (−
1

2
∇3
2)𝜓3(3)𝑑𝜏3∫𝜓1(1)

2𝜓2(2)
2⋯𝜓𝑝(𝑝)

2 𝑑𝜏1𝑑𝜏2⋯𝑑𝜏𝑝 

= ∫𝜓1(1) (−
1

2
∇1
2)𝜓1(1)𝑑𝜏1 + ∫𝜓2(2) (−

1

2
∇2
2)𝜓2(2)𝑑𝜏2 +⋯+

∫𝜓𝑝(𝑝) (−
1

2
∇𝑝
2)𝜓𝑝(𝑝)𝑑𝜏𝑝 = 𝜀1 + 𝜀2 + 𝜀3 +⋯+ 𝜀𝑝  

If one uses that all atomic orbitals are normalized, E will become the sum of the energy () of each 

molecular orbital. Since an electron is independent, the following series of formula are obtained. 

   ∫𝜓1(1) (−
1

2
∇1
2)𝜓1(1) = 𝜀1 

∫𝜓2(2) (−
1

2
∇2
2)𝜓2(2) = 𝜀2 

⋮ 

These correspond to solving next formulas. 

   𝜀1𝜓1(1) = (−
1

2
∇1
2)𝜓1(1) 
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𝜀2𝜓2(2) = (−
1

2
∇2
2)𝜓2(2) 

⋮ 

They have the same type; one only needs to solve any one of them. 

𝜀𝜓 = ℎ𝜓 ℎ ≡ −
1

2
∇2      26 

The above is a brief theory of the HMO method. 

 

Schrödinger Equation of Free Electron and Hückel Molecular Orbital Method 

 The equation which gives the Hückel molecular orbitals was obtained as Eq.26. Let us examine the 

Schrödinger equation of a free electron. Since a free electron is an electron which moves in the 

non-potential space, the Hamiltonian of the system of n free electrons (Hfree) corresponds to the 

equation excluding the potential terms in Eq.18. Namely, 

     𝐻𝑓𝑟𝑒𝑒 = −
1

2
∑ ∇𝑖

2𝑛
𝑖=1        27 

Since the potential does not exist and since electrons are independent, the procedures which give 

the Hückel molecular orbitals can apply to this case (24, 25 formulas). The resultant formula is 

Eq.26. That is, a Hückel molecular orbital method is equal to solving the Schrödinger equation of 

free electrons. 

Then, what is the difference between the Hückel molecular orbital method and the free electron 

model? It is only the difference in a way to solve. The Hückel molecular orbital method presupposes 

that molecular orbitals are expressed by the linear combination of atomic orbitals (LCAO) and it 

determines the degree (coefficient) of each atomic orbital to the molecular orbital using the 

conditions of "standing wave." 6) Contrary to it, the free electron model solves the Schrödinger 

equation analytically. Since the difference is only that much, both methods give the same conclusion. 

Conclusively, the HMO method obtains the relative kinetic energy of  electrons. 

 

1. Ruedenberg, K.; Scheer, C. W. , J. Chem. Phys., 21, 1565 (1953); ibid., 21, 1582 (1953). 

2. Ichikawa, H.; Sakata, K.,Int. J. Quantum Chem., 87, 135 (2002). 

3. If the Born-Oppenheimer approximation is said simply, it is assumed that nuclei do not move 

since electron movement is so fast compared with nuclear movement. The usual molecular 

orbital method adopts this assumption. Concerning this, it is very important to know that in 

chemistry, even if the interatomic distance of benzene changes a little, it is still regarded as the 

same benzene, but it becomes a completely different system (a different molecule) in a 

molecular orbital theory. 

4. This is called “independent electron model”. There are the phenomena A and B, and if 

probabilities are expressed as PA and PB , the probability that A and B will happen 

simultaneously is denoted by PA×PB. If each wave function is independent (independent 
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electronic model), the whole wavefunction (the total wavefunctions) is denoted by those 

products. 

5. It does not receive the potential (electrostatic repulsions) from other electrons, either. 

6. Many textbooks claim "the coefficients are so decided to make the energy of the system 

lowest." But this is absolutely erroneous. 


